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Abstract. We consider hysteresis in isotropic N-vector models in d dimensions in an external 
spatially uniform field varying sinusoidally in time. We use renormdiration group arguments 
to show thal for d > 2 and N 2 2, for small frequencies o, and small amplitudes Ho of 
the field, the ma of the hysteresis loop scales as with logarithmic corrections. For 
N = 1 and d > 1. using nucleation theory we show that the area far o << Ho scales as 
IT ln(Hom)l-ll(d-'l. The power-law dependence of the area of hysteresis loops in continuous 
spin systems is a manifestation of their self-organized criticality. 

1. Introduction 

In recent years there has been much interest in the power laws seen in open systems driven 
out of equilibrium [l]. Magnetic hysteresis is a simple example of a system in contact with 
a thermal reservoir, driven by an external time-dependent field. A brief review of some 
of the experimental properties of hysteresis in magnets can be found in [Z]. Although it 
is a very familiar phenomenon, theoretical attempts at understanding it have so far been 
mainly phenomenological [3]. Recently, evolution equations for the order parameter in 
various driven systems in the mean-field approximation have been discussed [4,5]. There 
are also some numerical studies mainly in two-dimensional king-like systems using Glauber 
and cell dynamics [6,7]. Sethna et al have studied the zero-temperature dynamics of the 
random-field king model, and shown that this simple model shows the so-called return 
point memory effect and Barkhausen-noise-like fluctuations in its hysteretic response 181. 
In continuous spin systems, relaxation in the N-vector model in the limit N + 03 starting 
from the Langevin equation has been discussed by Mazenko and Zannetti [9] and by Rao 
et el [6,10]. Based on numerical evidence, Rao et al have suggested that the area of the 
hysteresis loops has a power-law dependence on the frequency and amplitude of the external 
magnetic field. 

In an earlier work [ 1 I], we have studied hysteresis in the N-vector model in the limit 
N + 00. In this limit we showed that, for small magnitudes of the external magnetic 
field HO and at sufficiently low frequencies U,  the area of the hysteresis loop in the model 
varies as  HOW)"^ below the critical temperature, in all dimensions d > 2 (the lower critical 
dimension). The same result has also been obtained by Somoza and Desai [12] using a very 
similar approach. The case N = 2, d = 2 is special, and shows a continuously varying 
exponent with temperature, at all temperatures below the Kosterlitz-Tbouless transition 
temperature [13]. In this paper, we use renormalization arguments to generalize this result 
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to all N > 2 models with local ferromagnetic interactions and isotropic exchange couplings. 
We also show, using nucleation arguments, that for the N = 1 case (Ising model) the 
frequency dependence of the area is much weaker, and it varies as ITIn(Hoo)l-ll(d-l) in 
dimensions d > 1, in the limit of small m. 

We first consider the case N 2 2. For definiteness, we consider a system of planar 
spins (the XY model) on a d-dimensional hypercubic lattice interacting with each other 
by nearest-neighbour ferromagnetic couplings which are isotropic in the spin space. Let 0; 
(0 < 6, < 2 x )  be the spin variable on each lattice site i .  The Hamiltonian of the system is 
then given by 

P B Thomas and D Dhar 

where i i j )  denotes the sum over all nearest-neighbour pairs. The system is in contact with 
a heat bath at temperature T ,  less than the critical temperature T,. Note that we do not 
take into account dipolar forces. These give rise to domain formation in real ferromagnets, 
and a significant part of the hysteretic response of a multi-domain magnetic sample comes 
from the motion of domain walls (for a discussion, see for example, [ 141). Our treatment 
may be expected to be applicable to single-domain magnetic grains with small crystalline 
anisotropy. We also ignore precession and assume that each spin evolves under Langevin 
dynamics, the evolution equations in suitable units of time being given by 

- e,) - HosinwrsinB; + qi(t) (1.2) 

where j are all the nearest-neighbour sites to i. Here qa(t) is Gaussian white noise of zero 
mean, uncorrelated at different sites i. The variance of q&) is related to the temperature 
T of the heat bath, as usual. 

In the absence of a magnetic field, since T < Tc, there exists a spontaneous 
magnetization in thermal equilibrium. The fluctuations from the reference ground state 
are of two kinds: spin waves and topological excitations or defects (vortices or vortex lines 
for N = 2, hedgehogs for N = 3, etc). The defects are known to drive the order-disorder 
transition at least for small N .  However, a uniform time-dependent field tends to turn all 
the spins similarly, and thus does not lead to a significant change in the density of defects. 
At low temperatures, for not too small fields, there are only a few tightly bound defect pairs 
in equilibrium. A small density of defect pairs is created at domain walls for brief periods 
during magnetization reversals. But these annihilate very soon after, and do not significantly 
affect the overall magnetization. Thus, in the context of hysteresis, it is sufficient to consider 
only the nonlinear dynamics of spin waves. 

For low temperatures the equilibrium properties are known to be well described by 
the spin-wave approximation. The nonlinearities giving rise to interaction between the 
spin-waves lead only to a small renormalization of the spin-wave energy spectrum, but 
the qualitative behaviour of spin correlations at large distances is not affected by small 
nonlinearities. We thus expect that the spin-wave analysis suitably adapted will also provide 
a correct description in the non-equilibrium situation. 

2. Spin-wave approximation for large k modes 

The set of equations (1.2) are hard to solve analytically, because an infinite hierarchy 
of coupled differential equations relating the expectation values of the various correlation 
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functions (the BBGKY hierarchy) is obtained. In this section we describe an approximation 
scheme that distinguishes between the short and long wavelength fluctuations. The short- 
distance fluctuations are roughly in instantaneous thermal equilibrium at all times, and 
are quite well described by the non-interacting spin-wave approximation. However, it is 
not possible to treat the long-wavelength fluctuations (whose amplitudes are much larger) 
in the same way, because of the nonlinearities present in the system. These are much 
better described in real space by assuming that the evolution at sites very far away 
from each other are roughly independent. The value of the wavenumber k (denoted by 
k" in the following) which separates the spin-waves and the local fluctuation regimes is 
determined self-consistently. Thus while the large k modes are treated in the linear spin- 
wave approximation, we are able to determine the nonlinear hysteretic response of the 
system by correctly taking into account the nonlinear evolution of localized block spins. 

In the static case, the transverse correlation length is infinite only in zero field. In the 
presence of a time-varying field there is a significant transverse component of the spin-spin 
correlation functions (particularly during magnetization reversals). However, even in the 
presence of timevarying fields the connected part of the correlation function in the steady 
state isfinite rangedatall times. As the magnitude of H ( f )  decreases, the correlation length 
starts to increase, but at finite frequencies the magnitude of the field starts increasing long 
before it could become infinite. If the maximum value of the (time-dependent) correlation 
length is L*(Ho,w), at no time is the transverse components of the spins significantly 
correlated for distances greater than L*. Keeping L' a yet undetermined parameter, we 
make a spinrwave analysis of the fluctuations not about a uniformly magnetized state with 
long-ranged correlations, but about a state which is (possibly) magnetized, but in which 
connected correlation functions extend, at most, to a distance La.  We denote by 8, the 
Fourier transform of e,, and express 0, as a sum of a slowly varying function gi (the 
average over separations of order L*), and short-distance fluctuations 86'6 

e, = -66 + sei (2.1) 

where the Fourier decomposition of has only modes k < k* = rr/L*, and 80, has only 
Fourier components with k > k". 

As ((Sei - 88i+a)2) decreases as T ,  for small temperatures T of the system, one can 
replace sin(& - &+s) by its linear approximant (6'~ - ei+a). We then obtain fiom (1.2). the 
equation of motion of Se,, the amplitude of the short-wavelength fluctuations of wavenumber 
k. 

d dSSk - = - 2 J c ( 1  -cosk,)S& - fork k'. 
,=I dt 

(2.2) 

The response of the system to a slowly varying field is determined by the long 
wavelength fluctuations (the small k modes) in the system so, for simplicity, we can use the 
approximation (1 - cos k,) - kE/2, which makes the spin-wave spectrum purely quadratic 
in k, and spherically symmetric. At all times except during magnetization reversals, the 
spins are aligned in the direction of the field and so it is reasonable to replace cos& by 
m(t) ,  the magnetization at time t .  This is equivalent to a linearization approximation for 
the equation (2.2). Let u:(t) denote the expectation value of ISOkIz. It is easy to see that it 
satisfies the equation 
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From this one can estimate the maximum correlation length L* using the condition 
that the small wavelength fluctuations (k z k ' )  are in approximate instantaneous thermal 
equilibrium at all times, while for the modes with k < k * ,  hysteretic effects cannot be 
neglected. If the modes with wavenumber k are approximately in instantaneous thermal 
equilibrium, we get 

T 
JkZ + H ( r ) m ( t ) .  

a; = (2.4) 

We note that the functional dependence in this equation is slightly different from the 
exact result for the N-vector (4.4)' model in the N + 00 limit [ 9 ] ,  the hysteretic behaviour 
of which we have discussed in 1111. In this limit, 

1 

ax' = k 2  + H ( t ) / m ( t ) '  

However, since we are working at temperatures well below the critical temperature and the 
system has finite spontaneous magnetization m % mo = 1, this is not a serious difference. 

We have argued that the large IC modes are in approximate instantaneous thermal 
equilibrium, and have a time dependence roughly similar to that in  (2.4). In order to 
find the characteristic value of k above which (2.4) is approximately true, we note that by 
equation (2.3), whenever the magnetization m(t)  has the same sign as the field H ( t ) ,  the 
magnitude of du:/dt is less than 2 T .  For small H ( t ) ,  dH/dr iii HOW and equation (2.3) is 
consistent with equation (2.4), provided 

k4 >, H0w/2J2.  (2.5) 

We may thus identify the cross-over value k* with [ H O W / ~ J ~ ] ' / ~ .  As the amplitude or the 
frequency of the field tends to zero, k* can be made arbitrarily small. This is consistent with 
the known non-exponential decay of the transverse correlation function in zero field. We 
note that this identification of k* is in agreement with our ealier result for the limit N + m, 
in which case a saddle-point analysis of the equations of motion shows that k* m  HOW)''^. 
For modes with k < k' equation (2.3) may be simplified as 

da; 
- N 2T - 2H( t )m( t )u i  for k < k' (2.6) di  

and is roughly independent of k at all times t .  This is equivalent to assuming that the spin 
field e is essentially uncorrelated for length scales L > L*. Since modes with k > k* 
are approximately in instantaneous thermal equilibrium at all times, we may integrate these 
degrees of Freedom away and consider the evolution of g(x )  field averaged over length scale 
L*.  The equations of motion from equation (1.2) are again of the form 

- =  .TPFT- f i ( t )  sing+ i ( r )  (2.7) dt 

with renormalized couplings 

7 N J L * - =  60) N H(t)e-'*")/z i: E T L * - ~  (2.8)  

and a2(t)  = (l/q%) a:@) with U&) given by equation (2.3). 
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The renormalized coupling constants will differ from these values if the nonlinear 
interactions between spin-waves is taken into account. However, it is clear from equation 
(2.8) that the response of the system is determined by the zero-temperature fixed point 
(provided T T,) and, therefore, the nonlinear spin-wave couplings are irrelevant. Hence 
the linear spin-wave analysis is sufficient to determine the exponents describing the power 
law for the area of the loops. 

If L" is large (small frequencies, small fields), then .f is much smaller than f? and can 
be neglected. Then the hysteresis phenomena can be described in terms of independent, 
uncoupled, efeclive block spins. The Fokker-Planck equation of the probability distribution 
of e, ~ ( e ' ,  t )  ist 

ap - a - -azP 
at  ae ae - = H(a) , (Ps inO)+T, .  (2.9) 

Consistent with our linear approximation, the large k fluctuations are assumed to be 
distributed normally about e', and the magnetization is therefore given by 

ZX 

m(t) = e-oz(r)p P(g, t)cosTdg. (2.10) 

Equations (2.3), (2.8) and (2.9), provide a full description of hysteresis at low frequencies, 
in our approximation scheme. 

At small frequencies and fields, one can find the limiting scaling form of the area 
analytically, as follows. If the field HO is small, then for large k one has r$(t) - T / k 2 ,  
which is approximately independent'of time. Therefore in this limit, f?(t) - fiosinwt 
where & - HoePT, and a! is a constant. When wt - 0, we can linearize ~ ( t )  by 

@(t) N e-' H ~ ~ Z .  (2.  I 1) 

At low frequencies, L" is very large and & >> T .  Thus most of the time, the probability 
distribution is very sharply peaked at e' = 0 or z. For small e the Fokker-Planck equation 
(2.9) can be linearized to give 

It is easy to see that the solution of this equation is a Gaussian in e 

(2.12) 

(2.13) 

The solution for y(t) consistent with the boundary condition at large negative times is 

(2.14) 

t A similar equation including the effests of anisatropy has been studied earlier by Kumar and Ddlagupta to 
determine the AC susceptibility [IS]. However, they studied only Ole linear reqponse. while our interest is mainly 
in the nonlinw effects in hysteresis. 
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As a check, we find that at, as t + CO, the fluctuations are approximately at their 
instantaneous equilibrium value, y2(r) - i= / l f i ( t ) l .  

The coercive field Hc is the magnitude of the field when y 2 ( t )  - O(1). Since the 
maximum value of m is its spontaneous magnetization mo N 1 at low fields, the area 
W - H,, which therefore varies as 

w - ( ~ o o ) ” ~ ~ ~ n [ ( ~ o o ) ( ~ - ~ ) / ~ / ~ ] ) ~ / ~ .  (2.15) 
It is interesting to observe that the dependence on HO and w for the area is essentially 
the same as that for the N-vector model in the N + M limit, including the logarithmic 
correction [ 1 I]. 

when o > HO the inter-block 
couplings j =- fro, and cannot be neglected, so our treatment breaks down at high 
fmpencies .  However from a systematic I /w  perturbation series one can easily see that 
W - H:/w for large o. In the N + 00 case, there is a dynamical phase transition 
separating the low-frequency regime from the high-frequency regime [ l l ] ,  in which the time 
average of the magnetization has a non-zero expectation value, in the direction transverse 
to the magnetic field. Unfortunately since OUT approximation scheme is valid only when 
w < Ho, we cannot address the interesting question as to whether there is also a dynamical 
phase transition at high frequencies for finite N. 

In order to check the validity of the approximate solution (2,11), where U*([) was taken 
to be approximately independent of time (for small Ho), we have numerically solved the 
equations (2.3) and (2.9) directly, by expanding P(g,  t )  in a Fourier series in g. We define 
g,,(r) by the expansion 

We note that since kN2 is of the order of 

(2.16) 

By conservation of probability, go is independent of time, and is normalized to unity, i.e. 
go = 1. Substituting equations (2.16) in (2.14), we get an infinite series of linear, coupled, 
ordinary differential equations 

dg. = Pkosinwt(g,-l -g,+l) -nZT n > I .  (2.17) 
dr 2 

As P(B,  t )  is approximately Gaussian i n  3, the coefficients g, decay as exp[-nz/2A] [see 
equation (2.13)], In our numerical work, we kept terms in n up to a maximum value of 
n,- = 5A.  As a check, we doubled the value of n-, and found that there was no 
significant change in the solutions. The equations were solved using a variable-step fourth- 
order Runge-Kutta method. In figure 1 we compare the the frequency dependence of the 
area on the product (How) over a range of several decades, with the predicted form (2.15). 
The fit is not very sensitive to the choice of the fitting parameter K. We see that the fit 
is very good in the regime U << Ho. We thus see that the exact numerical solution of the 
nonlinear evolution equations (2.3) and (2.9) agrees very well with our analytically derived 
approximate solution (2.13) and (2.14). A direct check of the validy of equations (2.3) and 
(2.9) as a good approximation to the Langevin dynamical evolution of the spins was not 
attempted, as it would require much computer time. 

All the above analysis is easily generalized to the N > 2 models. There are (N - 1)  
transverse degrees of freedom, each of which evolve according to (2.3), giving a prefactor 
of ( N  - 1 )  to U’([). The renormalization of J and T is the same as in the case N = 2. 
At low frequencies, the uncoupled block spins will be N-dimensional vectors, but since the 
time dependence of the probability distribution is only a function of the azimuthal angle 8, 
the resulting equation is the same as (2.9). Thus the hysteretic behaviour for T c Tc is the 
same in all N > 2 models. 

I m  P ( B ,  r) = - C g , ( r ) c o s n S .  
2= “dl 
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-3.0 
-.8 -6 - 4  -2 0 

10g," (Ho~)  
Figure 1. A log-log plot of the area of the hysteresis loop against ( H p )  for the continuous 
spin case N 2 2, for Ho = 0.01 (squares), Ho = 0.1 (hiiangles) and Hu = 1 (circles). The 
full curve is our theoretical formula (2.15). W = ~(Huw)t12( In lK/~~inol t ' /Z  for a II 2.15 and 
K % 7.0. 

3. Hysteresis in the king case 

For N = 1 (the king model), there are no transverse fluctuations, and this leads to 
a qualitatively different hysteretic response compared with N 2 2. In this case, the 
magnetization reversals occur by the nucleation mechanism [16]. For small fields H, the 
size of a critical droplet of up spins, in a sea of down spins varies as u(T)/H, where 
u(T) is the temperature-dependent surface tension energy. Thus the excess energy of a 
critical droplet - ud(T)/Hd-', and the rate of nucleation - exp[-ud(T)/THd-']. These 
predictions of nucleation theory have been numerically verified in two and three dimensions 
[17]. Once nucleated, these droplets grow, and the rate of increase in the droplet radius is 
proportional to H. For a very small frequency w, we can determine the coercive field H, 
using the condition that at the corresponding time &, the average volume of droplets per 
site x 1, i.e. 

(HCtJd 1'' dt'exp [ -kl  ud(T)/THd-'(t')] kz 
0 

where kl and kz are constanll of order unity Using t, = HJHow, we get 

HY+'exp [ -kl  u'(T)/TH$-l] N kz (Hoo)d+' (3.1) 

which shows that, in the limit of small frequency, the coercive field and hence the area of 
the hysteresis loop varies as 

W - IT In(How)l-""-'). (3.2) 

In numerical simulations of hysteresis in Ising-like systems, the dependence of W on 
HO and w has been fitted to power laws [ 10,7]. This is presumably because the values of 
Ho and w used are too large for the asymptotic law (3.2) to be valid, and be significantly 
distinguishable from a power law. 
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In order to test the validity of our prediction (3.l), we have studied the variation of 
W with (How) in the single-spin flip Glauber model with sequential updating of spins 
using Monte Carlo simulations. We performed simulations on a 100 x 100 square lattice 
with periodic boundary conditions. The field was assumed to have a linear dependence on 
time, going from a large negative value to a large positive value. The magnetization loops 
obtained were quite reproducible. We averaged the magnetization over 20 cycles. In figure 
2 we have plotted the variation of W with (HOW) in our simulations for three different 
temperatures (T = J, 5 J / 4  and 3J /2 ) .  The theoretical fits using equation (3,1), treating 
kl and kz  as temperature-dependent fitting parameters, are also plotted. We see that the 
fits are quite satisfactory. It may also be noted that the slope of the log-log curve changes 
continuously but slowly, and decreases as (HOW) is decreased. The effective power-law 
form w - (Hoe)" gives a value (Y m 0.2 for (How) in the range to IO-’ in our units. 

LOG,, How 

Figure 2. Same M figure I ,  for N = 1: data for T = J (circles), T = 5514 (viangles) 
and T = 3/12  (squam). The full C U N ~ S  a? our theoretical predictions treating k [  and kz 2s 
temperature-dependent fitting pirametem. 

4. Summary and discussion 

We have shown that in N-vector spin models N > 2 in all dimensions d 2, the area of 
the hysteresis loops has a universal scaling behaviour W - (HOW)”’ at low amplitudes and 
frequencies of the field. This robust power-law behaviour in the area of the hysteresis loops 
in these models is a signature of self-organized criticality. We note that i n  hysteresis we 
are concerned with the non-equilibrium steady state in a dissipative system where nonlinear 
effects are important. These are the most important characteristics of self-organizing critical 
systems. 

In all continuous spin models there is self-organized criticality at the first-order transition 
line H = 0, because there are power-law correlations in the transverse fluctuations in the 
order parameter [IS]. In hysteresis, there is a non-zero time-dependent driving field. We 
note that for finite non-zero values of (HOW), the system has a finite correlation length L*, 
and is not truly critical. However as we have shown, the exponent characterizing the (How) 
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dependence of the area of hysteresis loops depends on the (non-equilibrium) nonlinear 
response of the critical state of the system at H = 0; and may be used to characterize the 
latter. Hence the power-law dependence of the area of hysteresis loops on HO and w can 
be thought of as a manifestation of the self-organized criticality of the system in zero field. 

Put differently, the significant contribution to the area of the hysteresis loop comes from 
the time when the system is driven through the two-phase coexistence region. In this case 
there is no free energy cost associated with changes in the order parameter, and hence no 
'bulk' thermodynamical restoring force to such changes. This leads to a gapless spectrum of 
relaxation rates in the system, which lies at the root of the power-law behaviour in the area 
of loops. Hysteresis in isotropic continuous spin system thus provides us with a simple 
example of self-organized criticality. 
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